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Abstract  

An analytical approach is proposed for studying 

the elastic-plastic behavior of short fiber 

reinforced metal matrix composites under 

tensile loading. In the proposed method, a 

micromechanical approach is employed, 

considering an axi-symmetric unit cell including 

one fiber and the surrounding matrix. First, the 

governing equations and the boundary 

conditions are derived and the elastic solution is 

obtained based on some shear lag type methods. 

A plastic deformation is considered for the 

matrix under each small tensile loading step. 

Then, applying the successive elastic solutions 

method, all the plastic strain terms are obtained 

for the matrix. Thereafter, the elastic-plastic 

stress transfer behavior of the composite is 

studied considering this plastic deformation. 

The results are finally compared with the 

numerical results obtained from the FE analysis 

of the considered micromechanical model. The 

proposed method is capable of predicting all 

plastic strain terms in the matrix and all the 

stress terms, as well.  

 

1  Introduction  

The use of metal matrix composite materials 

(MMC) in aerospace structures and engine parts 

has become more frequent recently. In general, 

numerous methods have been developed for 

elastic analysis of MMCs. One of the main 

approaches to such a problem is the Shear Lag 

Method [1-9], which due to the good description 

of the load transfer mechanism from the fiber to 

the matrix is of major importance and 

application. But, it should be noted that the 

various simplifying assumptions involved are 

considered as the main disadvantage of this 

model. Since due to such assumptions, the 

model is not that much accurate, it has been 

modified by others such as Hsueh [10-16, 21-

22], leading to increased efficiency.  

The load transfer from the fiber to the matrix is 

the most important mechanism governing the 

deflection and fracture response of the various 

fiber reinforced materials. The Shear Lag 

method first introduced by Cox [1] was vastly 

used due to its mathematical simplicity and its 

good prediction of this mechanism. Although it 

has been shown that this method can well 

predict this load transfer mechanism for brittle 

materials, but for ductile materials such as metal 

matrix of the MMCs, due to the occurrence of 

plastic deformations at low strains, it will not be 

able to well describe the material behavior.  

After the elastic analysis of the existing 

problem, Jiang [23] studied the plastic behavior 

of short fiber reinforced MMCs, applying the 

Shear Lag method. In this study, a very simple 

approach has been used for plastic analysis of 

the matrix. Since the general shear lag model 

applied is not capable of predicting the stress 

distribution in matrix, the problem has been 

simplified by means of assuming an average 

axial plastic deformation in matrix, defined by 

some linear distribution assumptions made later. 

Furthermore, the plastic strain term considered 

has been limited to the axial strain only, and the 

effect of the shear stress has been totally 

neglected by applying an approximate relation 

between the axial stress and the average axial 

plastic deformation in matrix.  

In the present study, an analytical approach is 

proposed for studying the elastic-plastic 

behavior of short fiber reinforced metal matrix 
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composites under small tensile loading steps. In 

the proposed research, employing a 

micromechanical approach, an axi-symmetric 

unit cell including one fiber and the surrounding 

matrix is considered. Using a shear-lag based 

formulation, first, the governing equations and 

the boundary conditions are derived and the 

elastic solution is obtained for both fiber and 

matrix. The governing relations are then 

obtained, considering all the stress and the 

plastic strain components. Applying the 

successive elastic solutions method, the plastic 

strain terms in matrix are obtained. Thereafter, 

the effects of this plastic deformation on stress 

transfer mechanism of the composite are 

resulted. Some numerical results obtained by FE 

analysis of the model are shown for comparison, 

also. It should be added that compared to the 

previous existing solutions to the current 

problem, all of which applied many simplifying 

assumptions, the proposed study is the first of 

its kind capable of predicting all plastic strain 

terms in the matrix, and the stress components, 

as well.    

2  Mathematical Formulation 

In order to study the elastic-plastic behavior of 

MMCs under simple tensile loading, a 

cylindrical axi-symmetric unit cell, consisting of 

a fiber and the surrounding matrix has been 

considered as shown in Fig. 1 and Figure 2. The 

cell is subjected to a uniform tensile stress, 0 . 

 

 
Fig. 1. Micromechanical unit cell. 

 

 

 
Fig. 2. Axi-symmetric model. 

 

According to FEM results and the governing 

equations, which can be admitted by common 

sense also, the plastic deformation in the matrix 

will start at somewhere in the adjacent region to 

the fiber, region I shown in Fig. 2, due to the 

low matrix yield stress and high stress 

concentrations in that region. Considering the 

occurrence of plastic deformation in matrix and 

focusing on region I of matrix from now on, the 

stress-strain relations for matrix in this region 

can be re-written as [24]: 

(1a) 

(1b) 

(1c) 

(1d) 
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where, mE  and m  are Young’s modulus and 

Poisson’s ratio of the matrix respectively and 
p terms define the plastic strain components. It 

is clear though that as loading is increased, the 

plastic region expands within the matrix, while 

the points for which the yield criterion is not 

satisfied yet, still remain in the elastic region, 

with p  terms being zero in Eq. (1a) to (1d).  

Considering the axi-symmetry of the model, and 

thus neglecting the derivatives with respect to 

 , the general equilibrium equations for both 

fiber and matrix can be written as [24]: 
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Assuming )(zg
z

m

z 



 and using Eq. (2a), it 

can be shown that [9]: 
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Where, )(zi  is the shear stress at the 

fiber/matrix interface. According to the last of 

the strain-displacement relations [24]: 
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(4c) 

(4d) 

with u  being the radial and w  the axial 

displacement, and neglecting the term 
z

u m




for 

matrix, according to the assumption that 

zwzu mm  //  , which due to the tensile 

loading condition and the symmetry of the 

model is a reasonable assumption, and assuming 

that the radial and tangential stresses in matrix 

are much smaller compared to the axial stress 

term,  m

z

mm

r    , and thus neglecting the 

term  mm

r    in Eq. (1c), and finally 

considering the strain-displacement relations, 

Eq. (4a) to (4d), it can be shown that: 
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(6) 

(5) 

in which, )(zf

z  is the average axial stress in 

fiber and m

a  and m

b  are the matrix axial 

stresses at ar  and br  , respectively.. 

On the other hand, from the first of the 

equilibrium equations, (1a), for fiber, using the 

average axial stress introduced in Eq. (5), the 

following relation, known as Shear Lag 

equation can be derived: 
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Combining Eq. (6), Eq. (3), the stress-strain 

relations, Eq. (1a) to (1d), and the strain-

displacement equations, Eq. (4a) to (4d), and 

finally substituting for  zrm

z ,  from Eq. (5), 

the following relation will be derived for the 

fiber average axial stress, )(zf

z : 
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As can be seen, the only unknown term in Eq. 

(7) is the matrix axial stress at the interface, 
m

a , which can be derived from the assumption 

of a perfect bond between fiber and matrix at 

the interface. In a same manner, equality of the 

tangential strains at the boundary will imply the 

radial stress at the boundary, introduced later as 
p . 

Finally, solving the ordinary differential 

equation, Eq. (7) one can easily derive the 

relation for fiber average axial stress, including 

the effect of a plastic deformation in the matrix.  



S. KHOSOUSSI1, M. MONDALI 

 

4 

 

  











































dzzFCzAB
B

A

C

zAB

dzzFCzAB
B

A

C

zAB

zf

z

)()exp(
2

1)exp(

)()exp(
2

1)exp(

)(

2

1



 (8) 

in which: 

    






















222242

22

3
4

1
ln1 abab

a

b
ba

ab

A

m

 

 
f

m

E

E
abaB 222   

0

2bC   

 

 

 








b

a

p

z

m

b

a

r

a

p

rz

m

drzrrE

drdrzrr
z

EzF

,2

,4)(





 

(9a) 

(9b) 

(9c) 

(9d) 

Using Eq. (6), fiber shear stress can be derived 

accordingly. 
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(10) 

As cleared at the beginning of the formulation, 

all the above discussions up to this point are 

valid for region I of the matrix shown in Fig. 2 

and the fiber within lz 0  range. 

Considering the lzl   area, a same approach 

as the one proposed by Hsueh [14, 15], known 

as the Imaginary Fiber Technique has been 

applied. By other words, the fiber is considered 

to be continuous along the whole cell length, 

with the lzl   region being known as the 

imaginary fiber. The same treatment as the one 

discussed above is applied to this fiber, except 

that at the end of the process, the material 

properties of this imaginary section will be 

replaced by the matrix properties. Considering 

the local plastic deformation in region I of the 

matrix as discussed, a same argument with [23] 

has been used as follows. As stated in [23], 

when the matrix local plastic deformation 

occurs in region I, it will also occur in the 

region near the fiber end face with the same 

magnitude. Therefore, the stress transfer in the 

fiber end region will not be affected by the 

plastic deformation in the fiber region. 

Following such an argument, the governing 

differential equation for imaginary fiber axial 

stress can be written as: 
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Therefore, the axial and shear stress for 

imaginary fiber can be derived as follows: 
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Where constants A  and C are previously 

defined in Eq. (9a) and (9c), while B is: 
2bB   (14) 

As can be seen in Eq. (8), (10), (12), (13), four 

unknown constants 1C , 2C , 3C , and 4C are still 

to be calculated. For this reason the following 

boundary conditions are applied to the axial and 

shear stresses previously derived: 
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After derivation of the stress distribution in 

fiber, combining the equations (1a), (1b), (2b), 

(4a), and (4b) for fiber, the following partial 

differential equation will be obtained for fiber: 
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In which,  zru f ,  is the radial displacement in 

fiber, as stated before. The following boundary 

conditions are applied to Eq. (17): 
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 (17a) 
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In which, the radial stress can be easily obtained 

by combining Eq. (1a), (1b), (4a), and (4b) for 

fiber. After derivation of the radial displacement 

in fiber and combining the equations (1a), (1b), 

(2b), (4a), and (4b) for matrix in a similar way, 

the following partial differential equation will 

be obtained for the matrix: 
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 In which,  zru m ,  is the radial displacement in 

matrix, as stated before. The following 

boundary conditions are applied to Eq. (18): 

    zauzau fm ,,   (19a) 

   zza pm

r  ,  (19b) 

Deriving the radial displacement for matrix, one 

can easily find the radial and tangential terms of 

stress in matrix combining the equations (1a), 

(1b), (4a), and (4b). 

But, as can be seen, Eq. (18) includes the 

unknown plastic strain functions  zrp

r ,  and 

 zrp ,  directly, while the other two 

components of  zrp

z ,  and  zrp

rz ,  will 

appear through equations (3) and (6) for matrix 

stresses. 

In order to calculate the plastic deformation and 

its effect on stress transfer in the composite, first 

of all, the yield criterion should be determined, 

in order to indentify critical loading at which the 

plastic deformation occurs at the first place. 

Considering the von-Mises yield criterion, 

ye   , yielding will occur as soon as the 

equivalent stress, e , in a certain point reaches 

the yield stress, y , where  the equivalent stress 

is defined as: 
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As described before, and will be shown in the 

numerical results, it is evident that the yielding 
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in Eq. (20), the critical stress, 0  for which 
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composite, will be calculated. Thereafter, for 
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 zr

e

e

pp

r 



  


 2

2  

 rz

e

e

pp 



  


 2

2
 

pp

r

p

z    

rz

e

e

pp

rz 








2

3

 

(21a) 

(21b) 

(21c) 

(21d) 

In which e

p  is the equivalent plastic strain. 

The application of the successive elastic 

solutions method is as follows now. After 

deriving the critical loading for which, the 

yielding will start in the matrix for the first time, 

the loading path is divided into increments. For 

the initial small loading step, an initial 

distribution is assumed for the plastic strain 

increments, 
p

r , p

 , 
p

z , and 
p

rz . 



S. KHOSOUSSI1, M. MONDALI 

 

6 

Thereafter, the differential equation Eq. (18) is 

solved as an elastic problem, and the radial 

displacement function for the matrix is derived. 

With  zru m ,  being known, the first 

approximation for the plastic strains can now be 

derived through Eqs. (21), by substituting these 

assumed values in all corresponding stress 

terms. It should be added that the equivalent 

stress term involved in these equations is found 

from the stress-strain curve. The procedure will 

now be repeated for these new obtained plastic 

increments, until the results converge to a 

constant value. The loading step is then 

increased and the process is repeated for the 

next loading increment.  

For the above purpose, a MAPLE code has been 

developed, and the plastic strain terms, and 

therefore the stresses have been derived for a 

loading path, as will be described in the next 

section.   

3 Results and Discussion  

In order to understand the effects of the plastic 

deformation in matrix on stress transfer 

behavior of the composite, the effective stresses 

contributing in this mechanism,  
f

z  and i , 

will be studied. The calculations are done for 

Al6061/SiC20% composite, with the following 

specifications: 

 
Table 1. Geometrical Specifications of Al6061/SiC20% 

Composite [25] 

s  k  f   f  

5  1  342.0  2.0  

 
Table 2. Mechanical Properties of Al6061/SiC20% 

Composite [25, 26] 
Material )(GPaE  )(GPaE p     

Al 6061 3.68  667.5  345.0  
SiC 470    17.0  

 

Fig. 3 shows the equivalent stress distribution in 

the matrix. It is clear that this stress is maximum 

at the interface, at the fiber end point, 

   lazr ,,  , as claimed before. As shown in 

this figure, for an applied loading 

of MPa2780  , the equivalent stress at the 

critical point of    lazr ,,   has reached the 

yield value, MPay 276 , for the first time.  
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Fig. 3. Matrix equivalent stress distribution for critical 

loading of MPa2780  . 

 

Thereafter, the unit cell has been subjected to 

loading of MPa2800  . The results for 

MPa2800   are shown by details in Figures 

4. Fig. 4 shows the shear stress distribution at 

fiber/matrix interface. Average fiber axial stress 

distribution is shown in Fig. 5 for 

MPa2800  . Finally, the matrix average axial 

stress distribution can be found in Fig. 6, all of 

which have been compared with the FEM 

analysis results of the axi-symmetric model. The 

calculated distributions for plastic strain 

components 
p

r , p

 , 
p

z , and 
p

rz are 

illustrated in Fig. 7 for the subject loading. Also, 

the numerical results at the interface are shown 

in Fig. 8 for a general comparison.  

 
Fig. 4. Shear stress distribution at interface for 

MPa2800  . 

 

 
yMPa 276  
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Fig. 5. Fiber average axial stress distribution for 

MPa2800  . 

 

 
Fig.e 6. Matrix average axial stress distribution for 

MPa2800  . 
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Figure 7. Plastic Strain at Interface for MPa2800  . 
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(a) Axial (b) Shear 

  
(c) Radial (d) Tangential 

 

Fig. 8. Plastic Strain at Interface for MPa2800  - Numerical results. 

 

As can be seen, the results show a good 

compatibility with the numerical solutions. 

However, the differences found between the 

calculated and the numerical results are 

expected to be acceptable due to the simplifying 

assumptions involved in the analytical method 

applied, as discussed by details. Also, the 

numerical results inevitably affect from the 

errors due to the singularity of the stress 

distribution at    lazr ,,  . But since no 

detailed work has been previously performed on 

this subject in the shear lag model framework, 

concerning all the strain and stress components 

in the matrix, and since most of the previous 

analytical solutions to the subject model 

involved major simplifying assumptions and 

rough estimations, mostly considering the axial 

direction only, and not capable of predicting the 

matrix behavior, it is believed that the current 

study is the first of its kind, having considered 

the governing equations to the entire model, 

avoiding as much as possible the major 

simplifying assumptions involved in previous 

studies. As a final note, it should be added that 

the present errors are the results of the 

assumptions made in the elastic solution, and if 

the existing elastic solutions can be modified, 

the proposed elastic-plastic analysis will lead to 

much accurate results.  

4 Conclusion and Remarks 

In the present study, an analytical shear lag 

based model was proposed to study the effects 

of the plastic deformations in matrix on overall 

stress transfer behavior of a fiber reinforced 

metal matrix composite. For this reason, a 

cylindrical unit cell consisting of a fiber and the 

surrounding metal matrix was considered under 

tensile loading. Writing the shear lag based 

relations for this model, the stress terms for both 

matrix and fiber were calculated, considering 

the occurrence of plasticity in the matrix due to 

the ductility of the metal matrix compared to the 

brittle characteristics of the hard fiber. Unlike a 

relatively similar study performed by Jiang [23] 

based on the shear lag approach, the present 

work has taken into account the stress 
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distribution in the matrix and has derived the 

governing relations for that region. Also, the 

effect of the equivalent stress, i.e. all the stress 

terms have been considered, rather than the 

mere axial stress applied in that work. 

Moreover, all of the four plastic strain terms, i.e. 

axial, shear, radial, and tangential strain 

components have been taken into account. 

Furthermore, the performed study is able to 

predict the plastic strain terms and the stress 

distributions in both fiber and matrix with an 

increase in the loading.  

To summarize, having obtained the shear lag 

based relations for the problem, the plastic 

strain distribution in the matrix has been derived 

for a given loading. Thereafter, the effects of 

these plastic strains on the interface shear and 

the fiber average axial stress have been 

obtained. It was also verified that the occurrence 

of a local plasticity in the matrix has an adverse 

effect over the stress transfer efficiency of the 

composite, via a reduction in these two critical 

load transfer mechanisms compared to the stress 

distribution in the absence of such deformations. 

Moreover, it was shown that as a local plastic 

deformation occurs in the matrix, the increase in 

the stresses occurs more slowly compared to the 

elastic case, which is another evidence for the 

efficiency loss in the presence of the matrix 

plasticity.  
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